Search results for "trigger detector"

showing 3 items of 3 documents

Time of flight measurements based on FPGA using a breast dedicated PET

2014

In this work the implementation of a Time-to-Digital Converter (TDC) using a Nutt delay line FPGA-based and applied on a Positron Emission Tomography (PET) device is going to be presented in order to check the system’s suitability for Time of Flight (TOF) measurements. In recent years, FPGAs have shown great advantages for precise time measurements in PET. The architecture employed for these measurements is described in detail. The system developed was tested on a dedicated breast PET prototype, composed of LYSO crystals and Positive Sensitive Photomultipliers (PSPMTs). Two distinct experiments were carried out for this purpose. In the first test, system linearity was evaluated in order to …

PhotomultiplierImage qualityComputer scienceInstrumentation and methods for time-of-flight (TOF) spectroscopyLinearityTrigger detectorsCoincidenceLyso-Time of flightLine (geometry)TEORIA DE LA SEÑAL Y COMUNICACIONESField-programmable gate arrayInstrumentationMathematical PhysicsSimulation
researchProduct

Performance of the ALICE VZERO system

2013

ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton-proton, proton--nucleus and nucleus-nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus-nucleus collisions. After describing the VZERO system, this publication presents its performance o…

Particle physicsPhysics::Instrumentation and DetectorsLarge detector-systems performance Trigger detectors Large detector systems for particle and astroparticle physics Heavy-ion detectorsmedia_common.quotation_subjectHeavy-ion detectorsNuclear Theorylarge detector-systems performanceFOS: Physical sciencesVZERO detectorlarge detector systems for particle and astroparticle physicsScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetrytrigger detectors; large detector systems for particle and astroparticle physics; heavy-ion detectors; large detector-systems performancetrigger detectorsNuclear physics0103 physical sciencesALICE; trigger; V0NUCLEAR COLLISIONSNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentV0 DETECTORMathematical PhysicsCore functionLarge detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectors; V0 DETECTOR; NUCLEAR COLLISIONSTrigger detectormedia_commonLarge detector-systems performancePhysicsLarge Hadron ColliderInteraction pointLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsALICE experimentTrigger detectorsLarge detector systems for particle and astroparticle physicheavy-ion detectorsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentralityLarge detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectorsParticle Physics - Experiment
researchProduct

Fast Interaction Trigger for ALICE upgrade

2022

We present the structure, functionalities and the first in-beam performance of the ALICE Fast Interaction Trigger (FIT). FIT comprises three detectors: FT0, FV0 and FDD, which use Cherenkov and scintillation effects to detect charged particles originating from proton-proton (pp) and heavy-ion collisions. FIT generates triggers for ALICE, monitors luminosity and background, measures collision time, and determines global collision parameters, such as forward multiplicity, centrality and event plane. FIT uses dedicated front-end electronics to measure time and charge of pulses at pp bunch crossing interval of 25 ns and pp (Pb-Pb) interaction rates of up to 1 MHz (50 kHz). FIT has been installe…

Nuclear and High Energy PhysicsPhysics::Instrumentation and Detectorsdetector performanceTime resolutionhiukkasfysiikkaScintillatorALICE FIT114 Physical sciencesscintillatortrigger detectorAlice fitmittajärjestelmätDetectors and Experimental TechniquesNuclear ExperimentInstrumentationtime resolutionTrigger detectorDetector performanceCherenkov detector
researchProduct